
Thermal-Aware Design and Flow for FPGA
Performance Improvement

Behnam Khaleghi and Tajana Šimunić Rosing
CSE Department, UC San Diego, La Jolla, CA 92093, USA

Email: {bkhaleghi, tajana}@ucsd.edu

Abstract—To ensure reliable operation of circuits under elevated
temperatures, designers are obliged to put a pessimistic timing
margin proportional to the worst-case temperature (Tworst),
which incurs significant performance overhead. The problem is
exacerbated in deep-CMOS technologies with increased leakage
power, particularly in Field-Programmable Gate Arrays (FPGAs)
that comprise an abundance of leaky resources. We propose a
two-fold approach to tackle the problem in FPGAs. For this
end, we first obtain the performance and power characteristics of
FPGA resources in a temperature range. Having the temperature-
performance correlation of resources together with the estimated
thermal distribution of applications makes it feasible to apply
minimal, yet sufficient, timing margin. Second, we show how
optimizing an FPGA device for a specific thermal corner af-
fects its performance in the operating temperature range. This
emphasizes the need for optimizing the device according to the
target (range of) temperature. Building upon this observation,
we propose thermal-aware optimization of FPGA architecture for
foreknown field conditions. We performed a comprehensive set of
experiments to implement and examine the proposed techniques.
The experimental results reveal that thermal-aware timing on
FPGAs yields up to 36.5% performance improvement. Optimizing
the architecture further boosts the performance by 6.7%.

I. INTRODUCTION

The continuous shrinking of transistor size has been accom-

panied with exacerbated reliability degradations, e.g., thermal

challenges caused by intensified power density due to the failure

of Dennard scaling [1]. In particular, elevated temperature

exponentially increases the leakage power, which contributes

to a substantial ratio of total chip power in deep-nano era,

especially in Field-Programmable Gate Arrays (FPGAs) that

comprise an abundance of leaky resources [2]–[6]. The increase

in power density, in turn, further raises the temperature, forming

a power-temperature positive feedback loop.

To ensure reliable operation of the circuits under elevated

temperatures, in addition to setting back increased packag-

ing costs, designers are obliged to put a pessimistic timing

margin proportional to the worst-case temperature (Tworst).

That is because, as temperature rises, transistors slow down

[7]; hence, the circuit needs to be clocked according to the

slowest (worst) case to meet timing constraint across the entire

temperature range. Such a one-size-fits-all policy suppresses

the performance as it overestimates the real timing margin.

A straightforward approach to alleviate the problem could be

employing more sophisticated cooling to throttle the worst-case

temperature. This, however, is not always affordable in terms

of cost or power requirement.

Previous studies have coped with the temperature-induced

performance inefficiency generally by diminishing the required

margin through decreasing the peak temperature Tworst [8], [9],

or by online adapting (i.e., dynamic scaling) of the frequency,

equivalent to narrowing the temperature-induced margin, ac-

cording to the circuit temperature [10]–[13]. While the former

approaches can be orthogonally employed with the frequency

adapting methods, they have demonstrated limited efficacy

in the scope of FPGAs. The latter approaches have yielded

promising power or performance gains, however, as we will

discuss in Section II, they need sophisticated techniques to

obtain temperature-performance correlation and do not account

for on-chip temperature variation in FPGAs [14].

In this paper, we propose a two-fold approach to enhance the

performance of FPGAs by tackling the pessimistic temperature-

induced delay margin and designing (i.e., fabricating) consid-

ering field thermal condition. For this end, first, we obtain the

performance and power characteristics of each type of resources

under a specific range of temperatures and estimate the thermal

distribution of applications using thermal simulation, which

if conducted precisely, is shown to provide an accuracy of

1°C [14]. Having the temperature-performance correlation of

resources together with the thermal distribution of applications

makes it feasible to apply small, yet sufficient, timing margin.

We call this approach thermal-aware guardbanding. Second,

we investigate the impact of operating corner on the efficient

design of FPGAs. Typically, FPGAs allow mapping applica-

tions using a few temperature corners, e.g., lowest and highest

supported junction temperatures [15]. Therefore, whether an

FPGA fabric is optimized (fabricated) for, e.g., 0°C or 100°C

may play a determinant role on its performance in each of these

temperatures. This becomes further complicated when, by using

the first proposed approach, the frequency of applications can

also be determined based on intermediate temperatures (i.e.,

multiple corners). Therefore, it becomes crucial to investigate

the optimum design corner that yields highest performance in

a given temperature range. Building upon our investigation,

we propose thermal-aware optimization of FPGA architecture

according to the thermal condition of the field application. We

examine the proposed method using specific commercial-like

FPGA architecture and toolset, however, the approach can be

generalized to different FPGA architecture and flows.

II. RELATED WORK

The previous research coping with FPGA temperature in-

clude studies that insert thermal sensors or exploit simulation-

based approaches to characterize the thermal profile, methods

that propose design (mapping) flow to reduce or balance the

temperature variation, and studies that aim to leverage the avail-

able temperature headroom to provide performance efficiency.

Thermal Estimation: Arguing for the inefficiency of

fabrication-time insertion of thermal sensors as the thermal

profile of the device widely varies across applications, the early

studies propose dynamic insertion and elimination of sensor

circuits, e.g., Ring Oscillator (RO), to correlate the captured

frequency of the sensor circuit with application temperature

[16], [17]. These approaches utilize the unused resources to

sensor sensors, which might be located distant from the tem-

perature hotspots. Furthermore, the accuracy of such sensors is

contingent upon inter-die variations, e.g., voltage fluctuations.

In general, it is shown that sensor circuits may not precisely

replicate the behavior of circuits critical paths (CPs) [11].

The study in [14] proposes a more accurate simulation-

based thermal profiling augmented by measurements from a

thermal camera. In this work, iteratively, the initial leakage

power of each block is estimated by factorizing the reported

total leakage power based on the temperature of each block

which is obtained using HotSpot simulator [18]. Thereafter,

the temperature-leakage convergence is considered to reflect

the real operation scenario. The factorization and temperature-

leakage loop parameters are calibrated by validating the simu-

lation temperatures with camera measurements.

Thermal Mitigation: In [8], the authors characterize the

thermal distribution of designs mapped on Xilinx FPGAs by

importing their block-level power consumption information

obtained from XPower tool [19] into a thermal simulator.

They integrate the power-thermal model in the placement

algorithm to isolate the hot blocks by constraining to prohibit

the utilization of their adjacent blocks. This technique showed

limited effectiveness. The study in [20] proposes a temperature-

aware placement and routing which attempts to balance the

temperature distribution by minimizing the difference of switch-

ing activities among neighbor blocks. This approach linearly

correlates the activity with temperature and does not consider

heat flow. In [21], the authors propose and calibrate a two-

layer thermal model by measuring a time-series of temperature

distributions by employing RO-based sensors. The tuned model

is used to predict the runtime temperature. Despite a one-time

adjustment of device parameters is required, the heat dissipation

parameters for each new application should be learned, which

is cumbersome.

Thermal-Aware Boosting: The work in [22] proposes timing

analysis of FPGAs in real operating conditions rather than the

corner cases through measuring the delay sensitivity of look-

up table (LUT) chain with respect to temperature. It shows an

insignificant variation of delay over a large temperature range,

which is in contrast with previous studies. This work also does

not propose a systematic approach to obtain the thermal profile

of an application. In [10] the authors propose an online timing

slack measurement circuit to be inserted in the CPs to achieve

the available timing margin. This approach utilizes additional

logic and clock resources which can be excessive accounting

the significant number of (near-) CPs in large applications.

In addition, it needs to add additional shadow register at the

end of each CP, which is not possible for certain cores such

as Block RAMs. Moreover, detection of timing mismatch in

the proposed circuitry depends on the input and might not

be triggered during operation. Another analogous approach

[12] proposes a two-step method to find the frequency-voltage

correlation in different temperatures. In this approach, before

mapping the actual application, its CPs are extracted via timing

0 10 20 30 40 50 60 70 80 90 100
Temperature (C)

CP BRAM DSP

0%

20%

40%

60%

80%

100%

D
el

ay
 In

cr
ea

se

Fig. 1. Impact of temperature on the delay of FPGA resources.

analysis and mapped to the FPGA fabric, along with an error-

checking and heating circuit. For different voltages and under

a range of temperatures, the frequency of the paths is increased

until they violate the timing. This approach assumes the same

temperature across the entire chip (and the entire CP) while the

temperature variation can reach above 20°C [14]. Therefore,

still, a pessimistic temperature needs to be considered, which

is inefficient. In addition, this approach will be cumbersome for

large applications with an excessive number of CPs, especially

CP of a design changes with temperature [11], and hence,

the same CPs may not represent the worst delay at different

temperatures, which has not been considered in this study.

Distinction from previous works:
(1) The proposed thermal-aware guardbanding leverages the

temperature-delay correlation obtained accurately in the fab-

rication stage of FPGA.

(2) Our thermal-aware guardbanding performs offline thermal

analysis. According to the obtained thermal profile, it specifies

the minimum timing guardband (i.e., maximum frequency)

based on the temperature (and associated delay) of the blocks.

(3) We examine the performance of an FPGA fabric when opti-

mized for, and running in, different field temperatures. Accord-

ing to our investigation, we propose thermal-aware optimization

of FPGA architectures that enhances their performance under

a foreknown field condition.

III. PROPOSED METHOD

We begin this section with constructing the proposed guard-

banding technique upon investigating the impact of tempera-

ture on FPGA building blocks. Afterwards, we represent the

efficiency gain obtained by calibrating the FPGA fabric for

certain operating condition. Finally, by leveraging the first two

techniques, we discuss thermal-aware optimization of FPGA

architectures.

A. Thermal-Aware Guardbanding

As a motivational example towards thermal-aware guard-

banding in FPGAs, in Fig. 1 we have measured the impact

of temperature on different components of these devices. In

this figure, CP indicates the representative critical path delay

of FPGA as a weighted average over the delay of different soft

(configurable) components, e.g., LUT and routing switch boxes

(SBs), according to their occurrence probability in a real design

critical path [23]. The setup of the experiments is detailed

in Section IV-A. According to Fig. 1, for a design merely

composed of soft-fabric, the overhead associated with worst-

case thermal guardbanding might reach 47% while this value

for a DSP-hungry application can reach up to 84%. In addition,

Fig. 1 also advocates for the ineffectiveness of sensor circuits

in predicting the timing behavior of applications under tem-

perature variations as different resources have shown different

sensitivity to temperature. Thus, a set of pre-specified circuits

may not exhibit the exact behavior of the real critical path(s).

Notice that even the components forming the representative CP

denoted in Fig. 1 have different timing behaviors whereby the

delay of LUT might increase up to 69% (for 0°C → 100°C)

while the delay of switch box rises by 39%1. These make

the need for an accurate thermal-aware guardbanding, which

precisely accounts for the temperature and sensitivity of each

individual resource, indispensable.

Operating temperature of an FPGA device depends on ambi-

ent temperature and power consumption of the design, whereby

the latter itself depends on the operating temperature and

frequency. Hence, an efficient guardbanding requires correla-

tion between temperature, frequency, and power consumption.

Algorithm 1 presents our proposed guardbanding method. First,

it calculates an initial frequency for the design, assuming a

base junction temperature equal to ambient temperature Tamb

for each of FPGA tiles2. Based on the obtained frequency and

activity factor, the dynamic power of each tile is calculated,

while the leakage power of each tile is calculated based on its

temperature. Note that both pdyn−f and plkg−T relation for

each type of resource are pre-identified. As for the temperature,

the powers of tiles are stored in a vector with n (equal to

the number of tiles) elements. Afterwards, the obtained power

vector is fed to a thermal simulator (e.g., HotSpot [18]) to

estimate the temperature of each tile. Notice that the dynamic

power varies among the tiles because of the type (e.g., soft-

fabric or hard-core) and activities of the tiles. Likewise, leakage

power also varies because of the type and temperature of

the tiles (though, initially, similar tiles consume equal leakage

power because their initial temperature is equal). With the

updated temperature, the algorithm (line 4) performs static

timing analysis again considering the temperature of each tile.

That is, the delay of each resource is calculated according to the

temperature-delay relation of the resource (as shown in parts by

Algorithm 1: Thermal-Aware Guardbanding

Input: netlist: Placed and routed design

Input: Tamb: Ambient temperature

Input: −→α : Activity of resources

Output: f : Design frequency

1
−→
T 1×n = [Tamb, · · · , Tamb] // n : Number of FPGA tiles

2
−−→
ΔT 1×n = [∞, · · · ,∞]

3 while ‖−−→ΔT‖∞ > δT do
4 f = T (netlist,

−→
T) // Timing analysis using

−→
T

5 −→p = −→p dyn(netlist,
−→α , f) +−→p lkg(

−→
T)

6
−→
T old =

−→
T

7
−→
T = HotSpot(−→p)

8
−−→
ΔT =

−→
T −−→

T old

9 f = T (netlist,
−→
T + δT)

1For the sake of simplicity, we have not shown the individual delays.
2As shown in Fig. 4, an FPGA tile comprises a logic cluster (or other

hard-cores) and its neighboring routing resources.

CP BRAM DSP

D1
00

D0 D2
5

D0

}

.....

T=0

}T=25 }T=100

0.9

1.0

1.1

1.2

1.3

1.4

De
la

y
(n

or
m

al
iz

ed
)

Fig. 2. Delay of differently optimized FPGA fabrics on different temperatures.

Fig. 1). Thus, the same resource will exhibit different delays in

different tiles, based on the temperature of the residing tile. It is

noteworthy that for accurate timing analysis, in each iteration,

the entire netlist should be probed since the critical path might

change at different temperatures. The updated temperature and

frequency is then used to update the power. This procedure

repeats until the temperature of every tile converges3, which

often takes a few (less than ten) iterations. Eventually, the

operating frequency is recalculated by assuming a small margin

of δT to compensate the convergence error. We provide further

details of timing analysis, power measurement, and thermal

simulation with an overview of the guardbanding flow in

Section IV-A.

B. Thermal-Aware Design

In spite of the design of Application-Specific Integrated
Circuits (ASICs) whereby the synthesis algorithm tries to

optimize the constraints by choosing the most-suitable gates,

the structure of FPGA fabric is foreknown. Thereby, the design

tool mainly optimizes the fabric by efficient sizing of the

constituting transistors of each kind of resource. In other words,

optimizing an FPGA deals with efficient sizing of the resources.

The target of optimization is a specific operating corner (e.g.,

100°@0.8V). Whilst the operating frequency of an application

can be tuned with the proposed thermal-aware guardbanding

technique, a device optimized for a certain corner will not be

necessarily optimum in the other temperatures.

To demonstrate this concept, we optimized (i.e., synthesized)

a specific FPGA architecture for three different operating tem-

peratures, i.e., 0°C, 25°C, and 100°C. Thereafter, we examined

the timing of each synthesized FPGA in all these temperatures

using our first proposed technique. That is, for a device op-

timized for 100°C, we measure its performance in 25°C by

performing static timing analysis under 25°C; hence, no extra
margin is assumed. Fig. 2 illustrates the results. The timing

of different components, i.e., CP (a soft-fabric path comprising

the configurable building blocks of FPGA), BRAM, and DSP

block is shown separately. As clarified in the figure, each chunk

of bars indicates a specific operating temperature. Analogously,

each bar in a chunk represents a device optimized for a certain

temperature. That is, D0, D25, and D100 denote the devices

optimized for 0°C, 25°C, and 100°C, respectively. To facilitate

comparison, the delays in each chunk (operating temperature)

are normalized to the minimum delay of that chunk.

As it is clear from Fig. 2, all components of a device opti-

mized for a specific temperature afford comparatively minimum

delay when running in that temperature. This observation is

3‖−→ΔT‖∞ denotes the maximum absolute value through the vector
−→
ΔT .

D0 D25 D100

0 20 40 60 80 100
115
125
135
145
155
165
175
185

D
el

ay
 (p

s)

Temperature (C)
Fig. 3. Comparing the temperature-delay relation of the representative critical
path in differently optimized FPGA fabrics.

intensified in the Block RAM wherein delay of the device

optimized for 100°C is 1.35× of the device optimized for

0°C, when both running at 0°C. Likewise, running in 100°C,

BRAM delay in the device optimized for 0°C, is 1.19× of

that optimized for 100°C. As shown in the figure, a similar

trend (though with less intensity) holds for the soft-fabric and

DSP block, as well. In Fig. 3, we elaborate this observation

for FPGA soft-fabric (CP) by comparing the delay of FPGAs

optimized for 0°C (D0), 25°C (D25), and 100°C (D100) in the

entire operating temperature range. According to the shown

measurements, the D0 device provides 6.3% higher perfor-

mance than D100 device when both operate in 0°C. However,

as temperature elevates, D100 device becomes more efficient,

which eventually affords 9.0% better performance in 100°C.

The D25 device lies in between and is optimal for medium

temperatures (T ∈ [20°C, 65°C]). It can be inferred from Fig. 3

that as the operating temperature converges the target optimized

temperature of the device, it provides better performance. This

is valid for BRAM and DSP cases shown in Fig. 2, as well. For

instance, compared to D0, the BRAM optimized for 25°C shows

an inefficiency of only 6% when running in 0°C, while this rises

to 35% for the 100°C–optimized device, D100. Analogously,

operating in 100°C, the BRAM of D0 is 19% less efficient

than D100 BRAM, while D25’s BRAM is only 4% slower.

It affirms that a device optimized for a certain temperature

exhibits minimum delay in the target temperature, while it still

supplies near-optimum delay in neighboring temperatures.

C. Thermal-Aware Architecture

A deduction of Section III-B might be devising an om-

nipotent FPGA fabric through optimizing a set of devices for

different temperatures, and choosing the one that yields higher

overall performance by studying their timing characteristics un-

der varying temperatures. Nevertheless, our investigation shows

that a single device cannot provide all-embracing superiority.

Assuming the operating temperature is uniformly distributed in

[Tmin, Tmax], we define the expected delay of an FPGA fabric

as:

E[d] =

∫ Tmax

Tmin
d(T)dT

Tmax − Tmin
(1)

As FPGA devices are usually employed in foreknown field

condition, we propose thermal-aware architectures according to

the field condition. For instance, while Intel Arria 10 devices

support a junction temperature range of 0°C to 100°C [24],

in certain cases, the field operating condition is known. A

terrestrial example is the state-of-the-art datacenters whereby

the heat generated by CPUs reaches 68°C, which can raise

TABLE I
ARCHITECTURAL PARAMETERS USED IN COFFE

Parameter Value Parameter Value
K 6 SBmux 12
N 10 CBmux 64
Channel tracks 320 localmux 25
Wire segment length 4 Vdd, Vlow power 0.8V, 0.95V
Cluster global inputs 40 BRAM 1024× 32 bit

the temperature of the embedded FPGA accelators (which are

gaining traction) up to 100°C [25]. For such applications, a

new FPGA grade optimized for high temperatures might be

determined. Notice that defining different grades is common in

FPGAs, e.g., each class of Arria 10 FPGAs already offers dif-

ferent speed grades. Obviously, a device architecture optimized

for, e.g., 70°C can still operate under low temperatures though

it yields higher efficiency in elevated temperatures.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section we first elaborate the general setup and flow

of the experiments conducted in this work, and then present

the results of the proposed method. Notice that while we

have used a particular FPGA architecture and design tools, the

proposed flow incorporates any arbitrary FPGA architecture and

characterization tools.

A. General Setup and Flow

Netlists: As shown in Fig. 5(a), to generate and obtain the

delay of FPGA soft-fabric resources and Block RAM, we uti-

lized the latest version of COFFE [23]. Given the architectural

description, COFFE models the FPGA resources and performs

automated transistor sizing to attain an area-delay optimum

architecture. It requires a transistor technology to generate and

utilize the SPICE netlist of components, for which we fed

22nm high-performance PTM process model [26] for the soft-

fabric, while we used its low power (high Vth) transistors for

the BRAM core. The architecture and components structure

generated by COFFE, partially shown in Fig. 4, conforms with

that of commercial devices [27], [28]. Table I summarizes the

target architectural parameters considered in our experiments,

mostly following COFFE defaults. Note that BRAM optimiza-

tion in COFFE requires to provide it with the leakage current

of the weakest SRAM cell in the target temperature, which

we obtained by carrying out Monte Carlo simulations over Vth

variations in various temperatures, as suggested by [29].

Performance: To obtain the temperature-delay relation of

resources (previously represented in Section III), we generated

the netlist of soft-fabric and BRAM resources in a base temper-

ature (e.g., 25°C) using COFFE, and then swept the temperature

over 0°C→100°C, which concurs with the supported junction

temperature range of commercial devices [24]. As shown in Fig.

5(b), for timing characterization of the DSP block under varying

temperature, we created multiple standard cell libraries with

the aim of Synopsys SiliconSmart 2016. Each library targets

a specific temperature within [0°C, 100°C] range. The tool

automatically characterizes a given SPICE description of cells

into a liberty file format, which can be utilized by synthesis

tools such as Design Compiler. For SPICE description of

the required cells, we exploited NanGate Open Cell Library

that provides post-layout netlist of various combinational and

sequential cells [30]. Eventually, we synthesized a Stratix-like

LUT

Fig. 4. Overview of the architecture [2] and building elements [23] of island-style FPGAs.

COFFE

T-D, Area,
Dyn. power

Handcrafted
Netlists

HSPICE

T-Leakage

CellsSpecs

SiliconSmart

Libraries

Design
Compiler

T-D, Area,
T-Power

Technology Architecture

VTR

Arch.

Arch. Benchmark

HotSpot

Sizing

Timing
Analysis

ACE

T

Power
Calculation

α

p

Frequency

T-D

Leakage

Dynamic

(a) Characterizing FPGA resources (b) DSP characterization (c) Thermal-aware guardbanding

P&R
Netlist

DSP
HDL

Resources
Netlists

HSPICET Range

Fig. 5. General overview of implementation of the proposed method.

DSP block [31] using the created cell library by Synopsys

Design Compiler 2013.12 for a base temperature and then

performed static timing analysis on different temperatures by

sweeping the libraries over the synthesized design.

Area and power: Area of the resources are directly reported

by COFFE and Design Compiler. COFFE also reports the dy-

namic power of the soft-fabric and BRAM elements for a fixed

frequency, which can be linearly scaled to other frequencies

and activity factors. To measure the leakage power, however,

we handcrafted the full SPICE netlist of the entire resources as

COFFE only models the critical path of each resource. As it

is required for thermal simulations, we conducted the leakage

measurements over the whole temperature range. We obtained

the dynamic power report of DSP from Design Compiler.

Similarly, we obtained the leakage power of the DSP under

different temperatures by sweeping the library.

Table II summarizes the area (μm2), delay (ps) and power

(uW) characterization of a device optimized for 25°C which,

as discussed in the following, we use to examine the proposed

guardbanding method. Delay and leakage power are shown as

a function of temperature, T , for which we measured them

with the step of 1°C and then obtained the best fitting function.

Dynamic powers are measured under 100MHz and switching

probability of 1 (α = 1) which, following pdyn = 1
2αCV 2f ,

can be scaled linearly to other frequencies and activities. The

area of an entire soft-fabric tile is ∼1196μm2.

Placement and routing: The implementation flow of the

TABLE II
PRIMARY AREA, DELAY, AND POWER RESULTS OF RESOURCES

Parameter Area, Delay, Pdyn, Plkg Parameter Area, Delay, Pdyn, Plkg

SBmux 2.8|166 + 0.67T |5.74|0.28e0.014T outputmux 0.6|31 + 0.17T |0.3|0.24e0.014T
CBmux 5.7|112 + 0.70T |0.64|0.26e0.014T LUTA 33|163 + 1.4T |1.6|2.5e0.015T
localmux 1.2|65 + 0.350T |0.15|0.06e0.015T BRAM 7811|902 + 6.74T |6.85|6.2 + (T70)

2

feedbackmux 0.9|100 + 0.54T |0.63|0.23e0.014T DSP 5338|547 + 4.42T |879|24.4e0.01T

proposed method along with the employed toolset is demon-

strated in Fig. 5(c). We used open source Verilog-to-Routing
(VTR) 7.0 [32] which enables a full FPGA-based design

stack from logic synthesis to placement, routing, and timing

analysis and supports wide range of architectures. For its input

architecture description, we have provided COFFE-generated

architecture file. Benchmarks consist of the 19 designs of the

VTR repository that comprise an average (maximum) of 17K

(89K) 6-input LUTs, 39 (334) BRAMs, and 19 (213) DSP

blocks. Afterwards, according to Algorithm 1, we use the

placed and routed output netlist (with the reported frequency)

of VTR along with the signals activity estimated by ACE 2.0

[33] as well as the previously characterized dynamic power and

leakage-temperature information of the resources (Fig. 5(a) and

Fig. 5(b)) to estimate power using an in-house script. Notice

that, in addition to the tiles placement, the routing information

is also required for accurate estimation of the dynamic power

distribution in routing resources. The estimated power vector is

given to HotSpot simulator [18] to estimate the temperature of

the tiles. Though the absolute value of the measured powers are

not necessarily equal to commercial FPGAs, we cross-validated

the thermal simulations exploiting Xilinx Power Estimator

spreadsheet [19] by having similar temperature sensitivity with

respect to power density, i.e., ΔT � 0.7
pdesign
pbase

in which

pdesign is the estimated total power of the design and pbase
is the device base (leakage) power. With the updated temper-

ature and pre-characterized temperature-delay information of

resources, we recalculate the timing information of the placed

and routed netlist. For timing analysis, we leverage and modify

timing analyzer of VTR to update the nodes delay according to

the residing tile temperature. As explained by Algorithm 1, this

procedure repeats until that temperature shows trivial change in

consecutive iterations.

B. Experimental Results

The experiments target both the thermal-aware guardbanding

and optimization approaches. As the effectiveness of thermal-

aware guardbanding is dependent on the ambient (hence, appli-

cation) temperature, we considered different ambient tempera-

tures, i.e., 25°C and 70°C. Fig. 6 and Fig. 7 demonstrate the

performance improvement obtained by thermal-aware guard-

banding whereby, respectively, 36.5% and 14% frequency in-

crease can be observed. For the baseline, we assumed Tworst=
100°C, hence timing guardband of the baseline is convention-

ally considered assuming maximum operating temperature. As

expected, with ambient temperature of 25°C there is more

Fig. 6. Performance gain of thermal-aware guardbanding at Tamb=25°C.

Fig. 7. Performance gain of thermal-aware guardbanding at Tamb=70°C.

room to increase the frequency before the application violates

timing. In both cases, due to relatively low switching rate, the

temperature converged after ∼2°C increase.

To examine the efficiency of the thermal-aware architectural

optimization, we considered high temperature operational en-

vironment and set the optimization temperature to 70°C (simi-

larly, low or mid temperature conditions can be considered, as

well). We compared the frequency of benchmarks mapped to

the 70°C–optimized device with a typical device (synthesized to

25°C@0.8V). Both devices also employ thermal-aware guard-

banding (rather than wort-case guardbanding), hence they oper-

ate with maximum performance. As shown by Fig. 8, thermal-

aware architectural optimization further boosts the performance

by 6.7%. The variation in performance gains depends on the

resources forming the critical path as BRAM and certain soft-

fabric resources are more sensitive to the size (optimization)

of the transistors. Note that, as discussed in Section III-B,

the 70°C–optimized device is expected to supply near-optimum

performance in a range of neighboring temperatures.

V. CONCLUSION

In this paper, we proposed design and timing flow for

boosting the FPGA devices. The proposed method aims on

obtaining the temperature-delay correlation for FPGA resources

to select accurate, non worst-case, timing margin based on

the application thermal profile. It showed 36.5% performance

boosting when the FPGA operates at ambient temperature of

25°C. In addition, we proposed architectural optimization of the

device according to foreknown field temperature conditions. A

device optimized for high temperature (70°C) afforded 6.7%
performance gain over the typical device.

ACKNOWLEDGEMENTS

This work was partially supported by CRISP, one of six

centers in JUMP, an SRC program sponsored by DARPA, and

also NSF grants #1730158 and #1527034. We thank Sadegh

Yazdanshenas from University of Toronto for his valuable help

in COFFE simulations.

Fig. 8. Performance improvement of thermal-aware architecture optimized for
Tamb=70°C over the baseline (both employ thermal-aware guardbanding).

REFERENCES

[1] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein, “Scaling, power,
and the future of cmos,” in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE
International, pp. 7–pp.

[2] A. A. Bsoul and S. J. Wilton, “An fpga architecture supporting dynamically controlled power
gating,” in Field-Programmable Technology, International Conference on. IEEE, 2010, pp.
1–8.

[3] Z. Seifoori, B. Khaleghi, and H. Asadi, “A power gating switch box architecture in routing
network of sram-based fpgas in dark silicon era,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2017, pp. 1342–1347.

[4] Z. Ebrahimi, B. Khaleghi, and H. Asadi, “Peaf: A power-efficient architecture for sram-
based fpgas using reconfigurable hard logic design in dark silicon era,” IEEE Transactions
on Computers, vol. 66, no. 6, pp. 982–995, 2017.

[5] Z. Seifoori, Z. Ebrahimi, B. Khaleghi, and H. Asadi, “Introduction to emerging sram-based
fpga architectures in dark silicon era,” Advances in Computers, 2018.

[6] S. Yazdanshenas and H. Asadi, “Fine-grained architecture in dark silicon era for sram-based
reconfigurable devices,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 61, no. 10, pp. 798–802, 2014.

[7] D. Wolpert and P. Ampadu, “Temperature effects in semiconductors,” in Managing temper-
ature effects in nanoscale adaptive systems. Springer, 2012, pp. 15–33.

[8] P. Sundararajan, A. Gayasen, N. Vijaykrishnan, and T. Tuan, “Thermal characterization and
optimization in platform fpgas,” in Computer-Aided Design, 2006. ICCAD’06. IEEE/ACM
International Conference on, 2006, pp. 443–447.

[9] S. Bhoj and D. Bhatia, “Thermal modeling and temperature driven placement for fpgas,” in
Circuits and Systems, IEEE International Symposium on, 2007, pp. 1053–1056.

[10] J. M. Levine, E. Stott, and P. Y. Cheung, “Dynamic voltage & frequency scaling with online
slack measurement,” in Proceedings of the 2014 ACM/SIGDA international symposium on
Field-programmable gate arrays, pp. 65–74.

[11] H. Amrouch, B. Khaleghi, and J. Henkel, “Optimizing temperature guardbands,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017, pp. 175–180.

[12] S. Zhao, I. Ahmed, C. Lamoureux, A. Lotfi, V. Betz, and O. Trescases, “A universal self-
calibrating dynamic voltage and frequency scaling (dvfs) scheme with thermal compensation
for energy savings in fpgas,” in Applied Power Electronics Conference and Exposition
(APEC). IEEE, 2016, pp. 1882–1887.

[13] H. Amrouch, B. Khaleghi, and J. Henkel, “Voltage adaptation under temperature variation,”
in 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD). IEEE, 2018, pp. 57–60.

[14] A. Amouri, H. Amrouch, T. Ebi, J. Henkel, and M. Tahoori, “Accurate thermal-profile esti-
mation and validation for fpga-mapped circuits,” in Field-Programmable Custom Computing
Machines (FCCM), 21st Annual International Symposium on. IEEE, 2013, pp. 57–60.

[15] “Timing analyzer user guide,” User Guide, Intel, May 2018.
[16] S. Lopez-Buedo, J. Garrido, and E. I. Boemo, “Dynamically inserting, operating, and

eliminating thermal sensors of fpga-based systems,” IEEE Transactions on components and
packaging technologies, vol. 25, no. 4, pp. 561–566, 2002.

[17] S. Velusamy, W. Huang, J. Lach, M. Stan, and K. Skadron, “Monitoring temperature in fpga
based socs,” in Computer Design: VLSI in Computers and Processors, IEEE International
Conference on, 2005, pp. 634–637.

[18] R. Zhang, M. R. Stan, and K. Skadron, “Hotspot 6.0: Validation, acceleration and extension,”
University of Virginia, Tech. Rep, 2015.

[19] “Xilinx power estimator user guide,” User Guide, Xilinx, October 2013.
[20] K. Siozios and D. Soudris, “A novel methodology for temperature-aware placement and

routing of fpgas,” in VLSI, IEEE Computer Society Annual Symposium on, 2007, pp. 55–60.
[21] M. Happe, A. Agne, and C. Plessl, “Measuring and predicting temperature distributions

on fpgas at run-time,” in Reconfigurable Computing and FPGAs (ReConFig), International
Conference on. IEEE, 2011, pp. 55–60.

[22] M. A. Kacou, F. Ghaffari, O. Romain, and B. Condamin, “Fpga static timing analysis
enhancement based on real operating conditions,” in Industrial Electronics Society, IECON
2017-43rd Annual Conference of the IEEE, pp. 3556–3561.

[23] S. Yazdanshenas and V. Betz, “Automatic circuit design and modelling for heterogeneous
fpgas,” in Field Programmable Technology (ICFPT), International Conference on. IEEE,
2017, pp. 9–16.

[24] “Intel arria 10 device datasheet,” Datasheet, Intel, June 2018.
[25] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme et al.,

“A reconfigurable fabric for accelerating large-scale datacenter services,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 13–24, 2014.

[26] Predictive technology model. [Online]. Available: http://ptm.asu.edu/
[27] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman et al., “The stratix ii

logic and routing architecture,” in Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pp. 14–20.

[28] I. Kuon, R. Tessier, J. Rose et al., “Fpga architecture: Survey and challenges,” Foundations
and Trends® in Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2008.

[29] S. Yazdanshenas, K. Tatsumura, and V. Betz, “Don’t forget the memory: Automatic block
ram modelling, optimization, and architecture exploration,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 115–124.

[30] Nangate open cell library. [Online]. Available: http://nangate.com/
[31] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing diversity: Enhanced dsp blocks

for low-precision deep learning on fpgas,” in Field Programmable Logic and Applications,
2018, International Conference on. IEEE, 2018, pp. 1–8.

[32] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk et al., “Vtr 7.0: Next
generation architecture and cad system for fpgas,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 7, no. 2, p. 6, 2014.

[33] J. Lamoureux and S. J. Wilton, “Activity estimation for field-programmable gate arrays,” in
Field Programmable Logic and Applications, 2006. FPL’06. International Conference on.
IEEE, 2006, pp. 1–8.

